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INTERACTrON OF AN UNSTEADY-STATE WAVE WITH A RIGID SPHERE IMflERSER 
IN A COMPRESSIBLE VISCOUS FLUID" 

A.S. BASMAT and A.N. GUZ 

The non-stationary interaction of an immovably fixed absolutely rigid 
sphere immersed in a compressible viscous fluid with a plane 
unsteady-state longitudinal wave is considered. A Laplace integral 
transformation is applied to obtain an expression in the transform space 
for the reaction of the fluid on the sphere. This expression is 
inverted by analytical and numerical methods. The linearized problems 
for a compressible viscous fluid considered in this paper produce, in 
the limit, the standard results for an acoustic medium /I/. 

Dynamic problems for rigid bodies immersed in a compressible 
viscous fluid are considered in the framework of linearized 
Navier-Stokes equations in /2/. Linearized equations with inertial 
terms are the equations obtained from the non-linear Navier-Stokes 
equations as it applies to small-perturbation problems. We have 
previously used this framework to investigate the non-stationary motion 
of a rigid sphere under the action of an active force /3/ and an impulse 
/4/ imparted to the sphere at the initial time. The non-stationary 
interaction of rigid and deformable bodies with unsteady-state waves 
propagating in an acoustic medium was considered in particular, in /l, 
5/. 

I. Statement of the problem and method of solution. Consider a rigid sphere of radius 
a immersed in an infinite compressible viscous fluid at rest. The fluid motion will be 
described by linearized Navier-Stokes equations. 

The field of the velocity perturbation vector in the fluid can be represented in the 
form 121 

v=CQt+VXP (1.1), 

The scalar potential tf, and the vector potential UT can be obtained from the equations 

/2/ 

(1.“) 

(1.3) 

where a, is the velocity of propagation of small perturbations in the fluid, and Y' is the 
kinematic coefficient of viscosity. 

The pressure and density perturbations P and p can be represented in the form (p. is 
the fluid density) 

(1.4) 
(1.5) 

We assume that the fluid is initially at rest, 

t = 0, r& -: u = p .= () (1.6) 

(u is the displacement of the fluid particles and v is their velocity). 
We associate Cartesian (5, y, z) and spherical (r, 0, 9) coordinate systems with the 

sphere, measuring the angle 0 from the s-axis. Assume that the sphere is fixed immovably. 
Let us determine the loads acting on the sphere as it interacts with a plane unsteady-state 
pressure wave propagating in the negative direction of the s-axis. 

The initial pressure perturbation P in the fluid in the plane z K 1 +a is given by 

p = f (t) H (t) (1.7) 
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Here f (t) is a function and H(t) is the Heaviside function. Let CD," be the incident wave 
potential and Q* and Y* the reflected wave potentials. By convention, all variables relating 
to the incident wave will be given the superscript ' and all variables relating to reflected 
waves will be given the superscript *. These potentials satisfy Eqs.tl.2) and (1.3), while 
the pressure perturbations P" in the incident wave and P*in the reflected waves satisfy 
(1.4). 

The boundary conditions for t>O have the form 

r = a, v,O + VT * = 0, VBO + va* = 0 (1.8) 

The problem thus reduces to the following: simultaneously solve Eq.Cl.2) for the incident 
wave potential W, and Eqs.tl.2) and (1.3) for the reflected wave potentials, satisfying the 
zero initial conditions 

t=0, @,"=a* =O, uE*=0 (1.9) 

and the boundary conditions (1.8). 
Given the zero initial conditions, we apply a Laplace integral transformation to Eqs. 

(1.2) and (1.3), and also to the boundary conditions (1.8), and solve the problems in the 
transform domain. 

2. Determination of the reaction of the ftuid on the sphere in the transform space. 
The suggested approach leads to the following problem in the transform space (p is the 
transformation parameter): 

(@/a$ _ ~2) QoL = 0, (A - 9) @*" = 0, @'A - P)Y*~ = 0 

pkp,(4,/,~‘a2/dz2 - P)d’, P*L = p0 (a/3~'A - P)@'*~, PoLI.=r+. = f"(p) 

A=f$rz$+ * a sint?--$- 
rasine?C 

(3.1) 

(2.2) 

r = a, "ZL + vzL =o, v;L+v;L=O (2.3) 

The potential of a plane wave propagating along the z-axis satisfies the first equation 
in (2.1). Its general solution has the form 

WL = A (p) ecr2 + B (p)eSz (2.4) 
For a wavepropagatingin the negative direction of the s-axis A (p) = 0. 

ficient B(p) is determined from the first and the last relationshfps in (2.2). 
The coef- 

we obtain an expression for the potential of the incident wave, 
As a result, 

and also the pressure created 
by the incident wave in the compressible viscous fluid: 

Q)oL = _ 1 + ;;;‘a;” fL @) e-s(i+a-n), P”L = fL (p)e-s(l+a-z) 
(2.5) 

We can show that the pressure in the compressible viscous fluid created by the pressure 
jump in the plane z = I+ a is non-zero everyhwere in the medium for t>O. Indeed, taking 
an asymptotic limit of the last expression in (2.5) for large Ip 1 and inverting it, we obtain 
for f(t)= 1 

p (z, t) = 1 -erf (w -K, (2.6) 

This necessitates introducing a new parameter 1 
source to the body - 

- the distance from the perturbation 

viscous fluid, 
to analyse the propagation of unsteady-state waves in a compressible 

the fluid. 
with the time measured from the instant when the perturbation is injected into 

t -+ t -F- lla. 
Passage to the limit in an acoustic medium obviously involves the substitution 

as v'-+ 0. ” 
For the axisymmetric case of reflection from the sphere, the vector potential 

by /2/ 
Y = VX(re,YJ 

The solutions of the second and the third equations in (2.1) allowing for the 
perturbations at infinity have the form 

m 
WL = 2 C,(p) r-"~K,+l/,(sr)P,(cos8) 

rz=ci 

Yis given 

(2.7) 

decay of 

(2.8) 
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Y:” LE 2 D* (p) r-“*K?&+i/* (qr) P, (00s q, q = 1/T 
n-l 

The coefficients C,, fp) and D,(p) will be determined by satisfying the boundary con- 
ditions (2.3). To this end, we expand the incident wave potential mot in a Legendre poly- 
nomial series, noting that z = rcosi3: 

Expressing the components of the fluid velocity vector in terms of the potentials Wr, 
CD*", and W**L and substituting them into (2.3), we obtain a system of two algebraic 
equations for determining C,(p) and D,(p) for all n. These equations are quite complicated 
and are therefore omitted. 

The stress vector on a surface element with the normal N in the fluid is determined by 
the components of the stress tensor in the fluid 

TN = e,o,, + eeo*e 12.10) 

The stress vector on the surface of the sphere in the fluid TN=TN'+ TN* is epxressed 
in terms of the stress tensor components u,,', u,e', a,,*, (~,a*. These components in turn are 
expressed in terms of CD", a*, and Y',*, respectively 121. 

The stress tensor components in the transform space have the form (n' = pnv') 

e;; _i 2$(+-A + ..$-)@"', & = 2+_?_._11$' 
arae 7 

(2.11) 

o::'= 2p' [($+ - A+-&)~*%(r-&+3$-r-&A-A)Y~‘] 

The component (along the e3 unit vector) of the reaction of the fluid on the sphere is 
given by the expression 

(2.12) 

Integrating over the surface of the sphere and using the orthogonality of Legendre poly- 
nomials and the fact that Kn+v. (4 and Inky,, are expressible in terms of elementary func- 
tions, we obtain after some reduction an expression in the transform space for the reaction 
of the fluid on a sphere interacting with a plane unsteady-state wave: 

F.,L fn) = -4n2 (1 + 4isv’ao-zp) fL (pf e-l@QL @) i (1 + KL (p)) 
QL (p) = b-1 + 3(j-'y-' + 3@-++, KL (p) = 2fi-" + 2g-' + y-l 

Here 6 = se, y = qa, and h = lla. 
In order to investigate (2.13), we will change to a dimensionless 

j? = up/a,, corresponding to the dimensionless time x = a&la in the 
dimensionLess variables, 

+ y-a 
(2.13) 

In what follows, we simply write p for c. 

tsansformation parameter 
source space. In 

3. Lhmiting cases. Passage to the limit v'+ 0 in the acoustic medium reduces (2.13) 
to the form 

F& (p) = -4na"fL (p) e+p(p2 + 2p -i- 2F 

For the case f(z)= 1, the inverse of (3.11 has the form 

FSaR (t) = -4na*e-fr-h) sin fi - ?v) N (7 - h) 
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which is identical with the result obtained for the acoustic medium model /l/ after making 
the substitution 732 + h. 

Let us investigate the variation of the reaction of a compressible viscous fluid on a 
sphere for large z. To this end, expression (2.13) is replaced with an asymptotically equiv- 
alent expression for small jp I. In the function QL(p) we retain the second and the third 
terms and in the denominator we retain 2fiP. The exponential is set equal to 1. As a result, 
we obtain 

F,L (P) = --~JW~ (P) (BP + BP) (3.3); 

For the case f(~)=p,, (PO = const), the inverse of (3.3) has the form /6/ 

F,,, (T) = -6nazP, (1/9 l/%e-“Ilo (u) + 3/,k-1 erf I/27, u = l/.&T (3.4) 

In the limit as Z-P CC we obtain from (3.4) 

F, (cc) = --Gnav’a;‘P, (3.5) 

From (3.5) we obtain the classical Stokes formula for fluid flow past a sphere. Indeed, 
consider the limiting value of th% velocity of the fluid particles, as it follows from the 
expression for the potential D," (2.5) and from the limit theorems of operational calculus 

Thus, the limiting reaction of the fluid on a fixed sphere as Z-+rn in the case 

f (4 = pll is identical with the standard Stokes formula. 

4. NwnericaZ determination of the reaction of the fluid 
invert expression 12.13), we represent it in the form 

F,L (P) = exp [---;lP (1 + P/k)-+ YL @) 

The function 

on the sphere. In order to 

(4.1) 

YL (P) = 
4i%z* (1-c P/k) fL(d QYP) 

I +J@m 
(4.2) 

in the source space corresponds to a Volterra linear integral equation of the second kind /7/ 

(4.3) 

Here G (z) is the source of the numerator in formula (4.2). 

(3.6) 

1 

Eq.(4.3) was solved numerically by successive approximations. The source of e~pl--Rp(if 
P/k)"'*1 is determined by representing this function in series form and inverting the series 
term by term. The sum of the series is determined numerically. Then the reaction of the fluid 
on the sphere F*(z) is obtained numerically by convolution. 

Figs.1 and 2 plot the reaction of the medium on the sphere FJ= -FF,i(4naP) as a function 
of the dimensionless time r for f(r)= I and various values of the parameters k (character- 
izing the size of the sphere and the properties of the fluid) and L (the dimensionless dis- 
tance from the perturbation source to the sphere). The solid curves correspond to the case 
of a compressible viscous fluid, and the dashed curves represent the solution (3.2) for the 
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acoustic medium. The dash-dot curves correspond to the asymptotic approximation of the fluid 
reaction (3.4). 

Unlike the acoustic medium, where the reaction on the sphere is produced by the incident 
wave front for z= A, the reaction on the sphere in a compressible viscous fluid is non- 
zero for T>O. For h=2, as the viscosity increases (Fig-l), the reaction of the com- 
pressible viscous fluid on the sphere progressively deviates from the reaction of the acoustic 

medium. The amplitude of the reaction of the fluid on the sphere noticeable decreases with 
distance from the perturbation source (Fig.2) and becomes smoother. The numerical results 
agree closely with the asymptotic approximation (3.4) for moderate dimensionless times 2. 
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ON THE IMPOSSIBILITY OF REGULAR REFLECTION OF A STEADY-STATE SHOCK WAVE 

FROM THE AXIS OF SYMMETRY* 

A.I. RYLOV 

Some problems concerning the explanation of the fact that regular 
reflection of a shock wave from the axis of symmetry is impossible are 
considered. This fact is well-known and can be demonstrated by linear 

analysis; it was proved in /l/ by integrating the compatibility condition 

along the characteristic reaching the point of alleged regular 

reflection. In this paper, we investigate the flow in the neighbourhood 
of this point and show that it should be conical. We also prove that the 
inverse problem of constructing the flow field and the boundary 
streamline from a given shock wave of arbitrary shape is physically 

unrealizable in a small neighbourhood of the axis of symmetry. 
This topic is also relevant because the literature contains 

conflicting statements claiming that regular reflection is possible and 
(much more seldom) impossible, never offering a detailed explanation 

(see, e.g., /2, 3/j. This may explains why this topic has not been 

treated in detail in authoritative monographs, unlike the similar problem 

of the collapse of an unsteady-state spherical or cylindrical shock wave. 

1. Consider the following proposed picture of the supersonic axisymmetric flow of an 
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